skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maniktala, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research on intelligent tutoring systems has been exploring data- driven methods to deliver e ective adaptive assistance. While much work has been done to provide adaptive assistance when students seek help, they may not seek help optimally. This had led to the growing interest in proactive adap- tive assistance, where the tutor provides unsolicited assistance upon predic- tions of struggle or unproductivity. Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. Addressing this dilemma is particularly challenging in open-ended domains, where there can be several ways to solve problems. Researchers have explored methods to determine when to proactively help students, but few of these methods have taken prior hint usage into account. In this paper, we present a novel data-driven approach to incorporate students' hint usage in predicting their need for help. We explore its impact in an intelligent tutor that deals with the open-ended and well-structured domain of logic proofs. We present a controlled study to investigate the impact of an adaptive hint policy based on predictions of HelpNeed that incorporate students' hint usage. We show empirical evidence to support that such a policy can save students a signi - cant amount of time in training, and lead to improved posttest results, when compared to a control without proactive interventions. We also show that incorporating students' hint usage signi cantly improves the adaptive hint policy's e cacy in predicting students' HelpNeed, thereby reducing training unproductivity, reducing possible help avoidance, and increasing possible help appropriateness (a higher chance of receiving help when it was likely to be needed). We conclude with suggestions on the domains that can bene t from this approach as well as the requirements for adoption. 
    more » « less
  2. The assistance dilemma is a well-recognized challenge to determine when and how to provide help during problem solving in intelligent tutoring systems. This dilemma is particularly challenging to address in domains such as logic proofs, where problems can be solved in a variety of ways. In this study, we investigate two data-driven techniques to address the when and how of the assistance dilemma, combining a model that predicts \textit{when} students need help learning efficient strategies, and hints that suggest \textit{what} subgoal to achieve. We conduct a study assessing the impact of the new pedagogical policy against a control policy without these adaptive components. We found empirical evidence which suggests that showing subgoals in training problems upon predictions of the model helped the students who needed it most and improved test performance when compared to their control peers. Our key findings include significantly fewer steps in posttest problem solutions for students with low prior proficiency and significantly reduced help avoidance for all students in training. 
    more » « less
  3. null (Ed.)
    Within intelligent tutoring systems, considerable research has in-vestigated hints, including how to generate data-driven hints, what hint con-tent to present, and when to provide hints for optimal learning outcomes. How-ever, less attention has been paid to how hints are presented. In this paper, we propose a new hint delivery mechanism called “Assertions” for providing unsolicited hints in a data-driven intelligent tutor. Assertions are partially-worked example steps designed to appear within a student workspace, and in the same format as student-derived steps, to show students a possible subgoal leading to the solution. We hypothesized that Assertions can help address the well-known hint avoidance problem. In systems that only provide hints upon request, hint avoidance results in students not receiving hints when they are needed. Our unsolicited Assertions do not seek to improve student help-seeking, but rather seek to ensure students receive the help they need. We contrast Assertions with Messages, text-based, unsolicited hints that appear after student inactivity. Our results show that Assertions significantly increase unsolicited hint usage compared to Messages. Further, they show a signifi-cant aptitude-treatment interaction between Assertions and prior proficiency, with Assertions leading students with low prior proficiency to generate shorter (more efficient) posttest solutions faster. We also present a clustering analysis that shows patterns of productive persistence among students with low prior knowledge when the tutor provides unsolicited help in the form of Assertions. Overall, this work provides encouraging evidence that hint presentation can significantly impact how students use them and using Assertions can be an effective way to address help avoidance. 
    more » « less
  4. null (Ed.)
    In recent years, Reinforcement learning (RL), especially Deep RL (DRL), has shown outstanding performance in video games from Atari, Mario, to StarCraft. However, little evidence has shown that DRL can be successfully applied to real-life human-centric tasks such as education or healthcare. Different from classic game-playing where the RL goal is to make an agent smart, in human-centric tasks the ultimate RL goal is to make the human-agent interactions productive and fruitful. Additionally, in many real-life human-centric tasks, data can be noisy and limited. As a sub-field of RL, batch RL is designed for handling situations where data is limited yet noisy, and building simulations is challenging. In two consecutive classroom studies, we investigated applying batch DRL to the task of pedagogical policy induction for an Intelligent Tutoring System (ITS), and empirically evaluated the effectiveness of induced pedagogical policies. In Fall 2018 (F18), the DRL policy is compared against an expert-designed baseline policy and in Spring 2019 (S19), we examined the impact of explaining the batch DRL-induced policy with student decisions and the expert baseline policy. Our results showed that 1) while no significant difference was found between the batch RL-induced policy and the expert policy in F18, the batch RL-induced policy with simple explanations significantly improved students’ learning performance more than the expert policy alone in S19; and 2) no significant differences were found between the student decision making and the expert policy. Overall, our results suggest that pairing simple explanations with induced RL policies can be an important and effective technique for applying RL to real-life human-centric tasks. 
    more » « less
  5. null (Ed.)
    Abstract: In this work, we investigate how two factors, metacognitive skills and motivation, would impact student learning across domains. More specifically, our primary goal is to identify the critical, yet robust, interaction patterns of these two factors that would contribute to students' performance in learning logic first and then their performance on a subsequent new domain, probability. We are concerned with two types of metacognitive skills: strategy-awareness and time-awareness, that is, which problem-solving strategy to use and when to use it. Our data were collected from 495 participants across three consecutive semesters, and our results show that the only students who consistently outperform their peers across both domains are those who are not only highly motivated but also strategy-aware and time-aware. 
    more » « less